Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 15(1)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2200883

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) are a major constituent of the extracellular matrix (ECM) and are found to be implicated in viral infections, where they play a role in both cell entry and release for many viruses. The enzyme heparanase-1 is the only known endo-beta-D-glucuronidase capable of degrading heparan sulphate (HS) chains of HSPGs and is thus important for regulating ECM homeostasis. Heparanase-1 expression is tightly regulated as the uncontrolled cleavage of HS may result in abnormal cell activation and significant tissue damage. The overexpression of heparanase-1 correlates with pathological scenarios and is observed in different human malignancies, such as lymphoma, breast, colon, lung, and hepatocellular carcinomas. Interestingly, heparanase-1 has also been documented to be involved in numerous viral infections, e.g., HSV-1, HPV, DENV. Moreover, very recent reports have demonstrated a role of heparanase-1 in HCV and SARS-CoV-2 infections. Due to the undenied pro-carcinogenic role of heparanase-1, multiple inhibitors have been developed, some reaching phase II and III in clinical studies. However, the use of heparanase inhibitors as antivirals has not yet been proposed. If it can be assumed that heparanase-1 is implicated in numerous viral life cycles, its inhibition by specific heparanase-acting compounds should result in a blockage of viral infection. This review addresses the perspectives of using heparanase inhibitors, not only for cancer treatment, but also as antivirals. Eventually, the development of a novel class antivirals targeting a cellular protein could help to alleviate the resistance problems seen with some current antiretroviral therapies.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/metabolism , Glucuronidase/genetics , Heparan Sulfate Proteoglycans , Heparitin Sulfate/metabolism , Biology
2.
J Virol ; 96(7): e0005722, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1759284

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Subject(s)
COVID-19 Drug Treatment , Heparin/analogs & derivatives , Cell Line , Cytokines/metabolism , Fenofibrate , Gene Knockdown Techniques , Glucuronidase/genetics , Glucuronidase/metabolism , Heparin/therapeutic use , Humans , Immunity/drug effects , Inflammation , Macrophages/drug effects , Macrophages/immunology , NF-kappa B , SARS-CoV-2
3.
PLoS One ; 16(10): e0258856, 2021.
Article in English | MEDLINE | ID: covidwho-1542176

ABSTRACT

Hypoxia is a common pathway to the progression of end-stage kidney disease. Retinoic acid-inducible gene I (RIG-I) encodes an RNA helicase that recognizes viruses including SARS-CoV2, which is responsible for the production of interferon (IFN)-α/ß to prevent the spread of viral infection. Recently, RIG-I activation was found under hypoxic conditions, and klotho deficiency was shown to intensify the activation of RIG-I in mouse brains. However, the roles of these functions in renal inflammation remain elusive. Here, for in vitro study, the expression of RIG-I and IFN-α/ß was examined in normal rat kidney (NRK)-52E cells incubated under hypoxic conditions (1% O2). Next, siRNA targeting RIG-I or scramble siRNA was transfected into NRK52E cells to examine the expression of RIG-I and IFN-α/ß under hypoxic conditions. We also investigated the expression levels of RIG-I and IFN-α/ß in 33 human kidney biopsy samples diagnosed with IgA nephropathy. For in vivo study, we induced renal hypoxia by clamping the renal artery for 10 min in wild-type mice (WT mice) and Klotho-knockout mice (Kl-/- mice). Incubation under hypoxic conditions increased the expression of RIG-I and IFN-α/ß in NRK52E cells. Their upregulation was inhibited in NRK52E cells transfected with siRNA targeting RIG-I. In patients with IgA nephropathy, immunohistochemical staining of renal biopsy samples revealed that the expression of RIG-I was correlated with that of IFN-α/ß (r = 0.57, P<0.001, and r = 0.81, P<0.001, respectively). The expression levels of RIG-I and IFN-α/ß were upregulated in kidneys of hypoxic WT mice and further upregulation was observed in hypoxic Kl-/- mice. These findings suggest that hypoxia induces the expression of IFN-α/ß through the upregulation of RIG-I, and that klotho deficiency intensifies this hypoxia-induced expression in kidneys.


Subject(s)
Glucuronidase/metabolism , Hypoxia/metabolism , Interferon-alpha/metabolism , Kidney/metabolism , RNA Helicases/metabolism , Up-Regulation , Animals , Glucuronidase/genetics , Hypoxia/genetics , Klotho Proteins , Mice , Mice, Knockout , RNA, Small Interfering , Rats
6.
Eur J Clin Microbiol Infect Dis ; 40(4): 807-813, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-891909

ABSTRACT

The purpose of this study is to develop a one-step droplet digital RT-PCR (RT-ddPCR) multiplex assay that allows for sensitive quantification of SARS-CoV-2 RNA with respect to human-derived RNA and could be used for screening and monitoring of Covid-19 patients. A one-step RT-ddPCR multiplex assay was developed for simultaneous detection of SARS-CoV-2 E, RdRp and N viral RNA, and human Rpp30 DNA and GUSB mRNA, for internal nucleic acid (NA) extraction and RT-PCR control. Dilution series of viral RNA transcripts were prepared in water and total NA extract of Covid-19-negative patients. As reference assay, an E-GUSB duplex RT-PCR was used. GUSB mRNA detection was used to set validity criteria to assure viral RNA and RT-PCR assay quality and to enable quantification of SARS-CoV-2 RNA. In a background of at least 100 GUSB mRNA copies, 5 copies of viral RNA are reliably detectable and 10 copies viral RNA copies are reliably quantifiable. It was found that assay sensitivity of the RT-ddPCR was not affected by the total NA background while assay sensitivity of the gold standard RT-PCR assay is drastically decreased when SARS-CoV-2 copies were detected in a background of total NA extract compared with water. The present study describes a robust and sensitive one-step ddRT-PCR multiplex assay for reliable quantification of SARS-CoV-2 RNA. By determining the fractional abundance of viral RNA with respect to a human housekeeping gene, viral loads from different samples can be compared, what could be used to investigate the infectiveness and to monitor Covid-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , DNA/analysis , Multiplex Polymerase Chain Reaction/methods , RNA, Messenger/analysis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Autoantigens/genetics , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Genes, Essential , Glucuronidase/genetics , Humans , Phosphoproteins/genetics , Real-Time Polymerase Chain Reaction , Ribonuclease P/genetics , SARS-CoV-2 , Sensitivity and Specificity
7.
Cell Mol Life Sci ; 77(24): 5059-5077, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-381758

ABSTRACT

Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-ß-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.


Subject(s)
Glucuronidase/genetics , Neoplasms/genetics , Virus Diseases/genetics , Extracellular Matrix/genetics , Glucuronidase/metabolism , Heparitin Sulfate/metabolism , Humans , Immunity, Cellular/genetics , Neoplasms/pathology , Neoplasms/virology , Signal Transduction/genetics , Virus Diseases/immunology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL